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Testing seeks to measure how frequently some event happens. This could be the rate of system 
failures in a launch routine, the rate of user errors in completing a task, or the rate of photon 
detection in an radioactive decay source. In just about every single job I have had, measuring 
the rate of failure/success has come up. Most of these scenarios follow a binomial distribution. 
While the math behind this is fairly simple the consequences of this math seems to be very 
counterintuitive - to the extent that people with advanced degrees in quantitative fields (Physics, 
Chemistry, Electrical Engineering, Computer Science…) often overlook these effects. In the 
interest of better understanding I have written up a basic exposition of how to calculate error 
rates and their uncertainty in basic binomial situations. 
 
For a pass/fail measurement that is sampled with replacement (each trial is uncorrelated with 
past and future events) the distribution of failures/successes follows a ​Binomial Distribution​. 
 
When the number of samples (​N​)​ ​is large and the probability of failure (​p​) is not close to 0, or 1, 
the binomial distribution can be approximated as a normal distribution. As a rule of thumb, this 
approximation works when . 10N · p >   
 
In this scenario, error of the failure rate measurement can be calculated on the basis of the 
number of measurements  and the measured failure rate  from the followingN pmeas =

nfail
ntotal

 

simple equation: 

 rror   e = z · √ N
p ·(1−p )meas meas  (Eq 1) 

Here ​z​ is a constant that relates the cumulative probability density of the normal distribution and 
the required confidence level. For a 95% confidence measurement z = 1.96; for a 90% 
confidence measurement z = 1.64. 
 
Let’s say we make 20 measurements and we see that 3 result in failures - so we estimate the 
failure rate as being ~15%. How confident are we in this rate? The binomial distribution is not a 
great approximation here ( , but for the sake of argument, let’s just plug into 3 10)N · p ≈  <   
equation 1. Using this equation with a 90% confidence interval, we see that the error in the 
estimate is ~13%. In other words if we made the measurement again, we should not be 
surprised to see anywhere between 0 and 6 errors in 20. The error of the measurement is as big 
as the signal we are trying to measure! 
 
So how many measurements do we need? It depends on the expected error rate, and the 
accuracy that we need on this measurement. If we assume that the failure rate is around 10%, 
and that we would like to have a 5% accuracy on this measurement with 90% confidence (p = 
0.1 +/- 0.05), then equation 1 predicts that we will need to make ​97 measurements​. 
 

https://en.wikipedia.org/wiki/Binomial_distribution


The normal approximation of the binomial distribution is great - it gives us a convenient equation 
to calculate results, but what if we wanted to use the precise distribution? Another way to look 
this question is to use a bootstrap method. Here the outcome of several trials is simulated, and 
the size of the confidence interval is measured directly. This avoids the need for any 
approximations. 
 
Using this method we estimate the accuracy of our measurement computationally. If we expect 
a failure rate p = 0.1, and we would like to have +/- 0.05 on the accuracy of this measurement 
(the full confidence interval is 0.1) then we see the following result: 

 
 

The above figure confirms that measuring the failure rate that is around p = 0.1 to within +/- 0.05 
to 90% confidence requires on the order of 100 measurements. 
 
Note that the requirements of this will go up more or less quadratically with the requirement for 
precision. Thus if we would like to be able to state the the failure rate if 0.1 +/- 0.025 then we will 
need on the order of 400 measurements. For a quick look up table, see the appendix. 

 
 

 
 
 



 
Appendix: 

 
Table of Accuracy: 
 

 

Expected 
Error Rate: 

10% Tolerance: 5% Tolerance: 1% Tolerance 

50% 96 Trials 384 Trials 9604 Trials 

40% 92 Trials 369 Trials 9218 Trials 

30% 81 Trials 323 Trials 6067 Trials 

20% 61 Trials 246 Trials 6144 Trials 

15% 48 Trials 196 Trials 4898 Trials 

10% 34 Trials 138 Trials 3457 Trials 

7% 25 Trials 100 Trials 2501 Trials 

5% 18 Trials 73 Trials 1825 Trials 

3% 11 Trials 45 Trials 1118 Trials 

2% 8 Trials 30 Trials 753 Trials 

1% 4 Trials 15 Trials 380 Trials 
 


